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armyworm population dynamics16,17. The species can be divided into subpopulations historically identified as 
“host strains”7, with the “rice-strain” predominating on millet and pasture grass species while the “corn-strain” 
preferring corn and sorghum18–20. These observations indicate that the strain composition of the Africa fall army-
worm infestation could have important ramifications for assessing crops at risk. However, such analysis is com-
plicated by the morphological similarity of the two strains, which leaves mitochondrial or Z-chromosome-linked 
(such as Tpi) markers the only available means of strain identification17,21. The correspondence between host plant 
and markers has been demonstrated for populations throughout the Western Hemisphere but is not absolute, 
suggesting some inaccuracy in the markers or plasticity in host plant choice19,21,22. Nevertheless, the association 
of the COI and Tpi markers with host strains has been sufficiently consistent to demonstrate marker-defined dif-
ferences in female pheromone constitution, mating behavior, and mating compatibility23–26. Several studies have 
shown that the strains are capable of productive hybridization in the laboratory and field, though this appears to 
occur at reduced frequency consistent with evidence of pre-mating barriers8,25–28.

A comparison of mitochondrial haplotype frequencies divides the Western Hemisphere corn-strain pop-
ulations into two geographically distinct groups designated the FL- and TX-types29,30. The TX-type profile is 
found throughout South America, Mexico, and most of the United States, with the FL-type limited to Florida, the 
Caribbean, and the eastern coast of the United States9,31,32. These markers allowed a mapping of fall armyworm 
migration patterns in North America33. Fall armyworm does not survive prolonged freezing temperatures so per-
manent populations in North America are limited to southern Florida and southern Texas, with more northern 
infestations due to migration. Over the course of the agricultural season large populations of fall armyworm move 
progressively northward facilitated by favorable southerly winds and the parallel progression of corn agriculture, 
covering a distance of several thousand kilometers in 1–3 months10,34. This migratory capability could explain the 
apparent rapid spread of fall armyworm in Africa if similar conditions are present and would present a consider-
able challenge for developing pest management programs.

This collection of genetic markers was applied to fall armyworm collections from the western Africa coun-
try of Togo35. Only a small number of COI and Tpi haplotypes were found, with haplotype frequencies most 
indicative of the FL-type, suggesting a Western Hemisphere origin from Florida or the Caribbean. A subsequent 
study expanded this survey to fall armyworm in central (Democratic Republic of Congo, Burundi) and eastern 
(Kenya, Tanzania) Africa as well as the islands of São Tomé and Príncipe, which lie approximately 250 km off 
the western Africa coast36. The same set of COI and Tpi haplotypes present in Togo were found in all locations, 
consistent with a single introduction and subsequent dispersal to or from these sites through natural migration 
or by contamination of trade goods. However, some significant differences were found in haplotype frequencies 
between regions indicating that the magnitude of the fall armyworm movements may not be sufficient to main-
tain a homogeneous population. If true, this would suggest that the movement of fall armyworm throughout the 
northern sub-Saharan region involves the dispersal of relatively small numbers rather than the large migratory 
populations annually occurring in North America.

One example of regional haplotype differences was exhibited by the COI polymorphisms diagnostic of fall 
armyworm strains. This was surprising since all specimens came from corn-strain preferred hosts and so were 
expected to be predominated by the corn-strain haplotypes. The COI markers for both strains were present in the 
surveyed locations, a finding consistent with recent reports from Uganda and South Africa37,38. The frequency 
of the corn-strain COI variant was significantly higher in Togo and São Tomé and Príncipe than in the more 
eastern sites, where the rice-strain COI haplotype uncharacteristically predominated. However, when the same 
collections were analyzed for the strain-defining Tpi exon segment, the corn-strain Tpi haplotypes were present 
at >90% frequency at all locations. The minority Tpi haplotype carried the rice-strain marker but had additional 
sequence variations not yet found in Western Hemisphere populations36. This discrepancy between the COI and 
Tpi strain identification combined with the uniqueness of the rice-strain Tpi haplotype makes the strain com-
position of the African populations uncertain and brings into question the accuracy of the COI strain markers 
in Africa. This is of concern as recent studies based solely on COI have concluded the presence of the rice-strain 
in multiple African locations2,37,38, which could influence assessments of crops at risk. It is therefore relevant to 
further assess the accuracy of the COI marker for strain identification in African populations.

The objectives of this work were to expand the genetic survey to now include southern Africa, an additional 
year of collections in Togo, and new sites in central Africa that when combined with earlier studies provide a near 
continent-wide genetic comparison of African fall armyworm populations. This description of fall armyworm 
distribution patterns during the first two years of its detection in Africa can be used to identify future changes as 
the populations further equilibrate. In addition, sequence comparisons of a highly variable Tpi intron segment 
were performed to better assess the level of genetic variation in the different fall armyworm populations and 
to confirm the strain-identity of the unique Tpi haplotype found in Africa (currently designate as a rice-strain 
marker). The implications of these results on the likely number of introductions into the African continent and 
the strain composition of the African populations are discussed.

Results
Host strains in Africa. We previously analyzed fall armyworm populations from six African nations in the 
northern sub-Saharan region for genetic variation in the mitochondrial COI and sex-linked Tpi genes36. We now 
extend this work to include five additional countries that expand the surveyed region westward to Ghana and 
southward to South Africa as well as providing a second year of collections from Togo and additional specimens 
from the Democratic Republic of Congo (Table 1, Supplementary Fig. S1).

The COI and Tpi genes contain single nucleotide polymorphisms (SNPs) that are diagnostic of fall armyworm 
host strain identity in Western Hemisphere populations (Fig. 1). Specifically, site mCOI1164D (see Methods 
for nomenclature) is diagnostic of strain identity with T1164 identifying the rice-strain COI-RS haplotype group 
and either A1164 or G1164 indicative of the corn-strain COI-CS label (C1164 has not been found in this species). 
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Polymorphisms at five other sites (mCOI1125Y, mCOI1176Y, mCOI1182Y, mCOI1197R, mCOI1216W) also 
show a strong strain bias in Western Hemisphere populations (Supplementary Fig. S2). Strain-diagnostic mark-
ers are also found in a portion of the fourth exon (TpiE4) of the coding region in the nuclear and sex-linked 
Tpi gene17. TpiE4 contains three sites (gTpi165Y, gTpi168Y, and gTpi183Y) that are strain-specific in Western 
Hemisphere populations, with gTpi183Y used as the diagnostic marker to define the corn-strain (TpiC) or 
rice-strain (TpiR) identity (Fig. 1b). Because Tpi is on the Z-chromosome, heterozygosity (TpiC/TpiR) is possible 
in male specimens and is denoted as TpiH.

Label Country Regions (n) Year Collector/Reference

BUR Burundi Multiple sites (38) 2016–17 Nagoshi et al.36

CAR Cen Afr Repa Ombella-M’poko (33) 2017 S. Ngarassem

CHA Chad Multiple sites (19) 2017 N. A. Doyam

GHA Ghana Multiple sites (44) 2016 G. Goergen

nDRC DR Congob Sud-Ubangi (27) 2017 Nagoshi et al.36

sDRC DR Congob Haut-Katanga (72) 2017 Nagoshi et al.36

KEN Kenya Multiple sites (55) 2017 Nagoshi et al.36

SAf South Africa Multiple sites (74) 2017 H. Du Plessis

STP Sao Tomec Multiple sites (22) 2016 Nagoshi et al.36

TAN Tanzania Morogoro (69) 2017 Nagoshi et al.36

TOGa Togo Multiple sites (89) 2016 Nagoshi et al.36

TOGb Togo Lomé (340) 2017 Meagher et al.51

ZAM Zambia Serenje (74) 2017 M. Rice

ARG Argentina Multiple sites (153) 2011–12 Murua et al.43

Nagoshi et al.9

BRA Brazil Multiple sites (76) 2008 Nagoshi et al.30

PR Puerto Rico Multiple sites (236) 2009–12 Nagoshi et al.31,32

TX Texas, USA Multiple sites (414) 2008–15 Nagoshi et al.9,31

FL Florida, USA Multiple sites (783) 2008–15 Nagoshi et al.9,31

Table 1. Source information for fall armyworm specimens. aCentral African Republic. bDemocratic Republic of 
the Congo. cSão Tomé and Príncipe.

Figure 1. Diagrams of the COIB, TpiE4, and TpiI4 gene segments with respect to consensus Western 
Hemisphere sequences and the haplotypes observed in Africa. (a) The mCOI1164D site defines COI-based 
strain identity. Other polymorphisms define haplotypes. (b) The gTpi183Y site defines Tpi-based strain identity. 
Seven polymorphic exon sites differentiate the consensus strain-specific Western Hemisphere sequences and the 
three TpiE4 haplotypes from Africa that can be further subdivided by sequence variations in the 162-bp TpiI4 
intron segment.
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The majority of the collections from Togo and São Tomé and Príncipe express the COI-CS marker with a 
mean frequency that is significantly different from that of the rest of the continent where the COI-RS rice-strain 
marker predominates (Fig. 2a). In contrast, the Tpi rice-strain indicator, TpiR, was in the minority in all locations, 
representing 1% of observed haplotypes. Taking TpiH heterozygotes into account (described in Methods) resulted 
in an overall mean of about 10% TpiR frequency on a per chromosome basis with the corn-strain TpiC marker 
predominating in all locations with no apparent significant differences between locations (Fig. 2b). These obser-
vations indicate that the COI and Tpi strain markers must be in disagreement in much of Africa. This can be seen 
by comparing the frequency of specimens expressing a discordant (COI-CS TpiR or COI-RS TpiC) configurations 
(Fig. 3). The discordant configurations are considerable or predominate at all locations with the exceptions of 
Togo and São Tomé and Príncipe, where the concordant configurations are the majority at levels typical of the 
Western Hemisphere. As expected from the rarity of the TpiR marker in Africa nearly all of the discordant spec-
imens (99%, 367/371) are COI-RS TpiC.

Characterization of CoIB haplotypes. A total of 616 sequences from this study were combined with 
earlier data36 for a total of 905 African sequences from which six COIB haplotypes were identified (Table 2). 
All polymorphisms are single-base changes that do not alter the presumptive amino acid sequence. The Africa 
populations were predominated by two COIB haplotypes. The COI-CSa1 form made up 99% (372/376) of 
the COI-defined corn-strain group (COI-CS) while COI-RSa1 was 95% (502/529) of the rice-strain (COI-RS) 
subpopulation (Table 2). Both are identical to the predominant COIB haplotypes in the Western Hemisphere 
(Supplementary Fig. S2). Four additional rare haplotypes were found that include the COI-CS variant COI-CSa2, 
found so far only in Togo, and three COI-RS haplotypes made up of COI-RSa2 found in 25 specimens spread 
over eight locations and single COI-RSa3 and COI-RSa4 specimens from Togo and Kenya, respectively (Table 2).

Polymorphisms at two sites in COIB, the strain-diagnostic mCOI1164D and mCOI1287R, subdivide the COI-CS 
group into four configurations (h1 = A1164A1287, h2 = A1164G1287, h3 = G1164A1287, h4 = G1164G1287) that differ region-
ally in their Western Hemisphere distributions29,30. The h4 configuration is the majority form in Florida and Puerto 
Rico and is represented in Africa by the COI-CSa1 haplotype that predominates at all African sites (Fig. 4, Table 2). 
The h2 configuration, which is found in over 75% of corn-strain specimens from Texas and South America, has so 
far only been found in the Togo collections (COI-CSa2) where it represents 1% (4/376) of the COI-CS specimens. 
The h1 and h3 configurations, which are in the minority in the Western Hemisphere, has yet to be reported in Africa.

Figure 2. Comparisons of COI and Tpi haplotype frequency in 13 fall armyworm collection sets, including 
seven from a previous study36 (*). The Togo and São Tomé and Príncipe collections were compared with that 
from the rest of Africa by two-tailed t-test analysis. The mean percent ± standard deviation is indicated over the 
horizontal bars, with different lower-case letters indicating statistical significance. (a) Frequency of the COI-CS 
strain diagnostic marker based on analysis of the COIB segment. Number of specimens indicated above columns. 
(b) Frequency of the TpiC strain diagnostic marker from the TpiE4 exon segment adjusted for the contribution 
of heterozygotes. Estimated number of chromosomes tested indicated above columns. (c) Frequency of the 
TpiCa2 variant from the TpiE4 exon segment adjusted for the contribution of heterozygotes. Estimated number of 
chromosomes tested indicated above columns.
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Characterization of Tpi haplotypes. The African populations consist of only three TpiE4 haplotypes, 
two TpiC variants (TpiCa1 and TpiCa2) and a single rice-strain haplotype, TpiRa1 (Fig. 1b, Table 3). The TpiRa1 
haplotype is unusual in that it differs from the consensus Western Hemisphere TpiR sequence at four sites 
(Supplementary Fig. S3). Three sites, (gTpi129C, gTpi144G, and gTpi180C) are not frequently polymorphic in the 

Figure 3. Frequencies of COI and Tpi strain marker configurations in Africa compared to pooled data from the 
Western Hemisphere. Configurations are categorized as Concordant (COI-CS TpiC, COI-RS TpiR), Discordant 
(COI-CS TpiR, COI-RS TpiC), and Heterozygous (COI-CS TpiH, COI-RS TpiH). Number of specimens is 
indicated above columns. Mean frequencies of the Discordant configurations from Togo and São Tomé and 
Príncipe collections were compared with that from the rest of Africa by two-tailed t-test analysis.

Collection

COI-CS types COI-RS types

CSa1 CSa2 RSa1 RSa2 RSa3 RSa4 Total

GHA 10 0 25 1 0 0 36

TOGa* 52 1 23 2 0 0 78

TOGb 211 3 112 13 1 0 340

STP* 13 0 5 0 0 0 18

CHA 3 0 15 0 0 0 18

nDRC* 11 0 10 0 0 0 21

sDRC* 16 0 46 5 0 0 67

CAR 8 0 19 1 0 0 28

BUR* 16 0 22 0 0 0 38

KEN* 2 0 42 1 0 1 46

TAN* 5 0 59 1 0 0 65

ZAM 10 0 40 1 0 0 51

SAf 8 0 81 0 0 0 89

Mean frequency 0.33 <0.01 0.64 0.02 <0.01 <0.01

Table 2. COIB haplotype data. Data from earlier study36 identified by asterisk.

Figure 4. Frequency distributions of the COIB h-haplotypes, h1–4, for select locations in the Western 
Hemisphere and Africa. Numbers above columns indicate the number of COI-CS specimens. For Previous 
studies: AfrA = Africa36, SA = South America30,43,52, TX = Texas32, FL-PR = Florida and Puerto Rico31,32.
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Western Hemisphere, while one (gTpi165Y) exhibits strain-specific variation. The TpiRa1 haplotype has not yet 
been found in Western Hemisphere collections35,36. The corn-strain TpiCa1 and TpiCa2 differ at sites gTpi192Y 
and gTpi198Y, with both variants common in the Western Hemisphere. The three African TpiE4 haplotypes were 
observed to form three classes of heterozygotes noted as TpiC-YY = TpiCa1/TpiCa2, TpiH-CC = TpiCa1/TpiRa1, 
and TpiH-YY = TpiCa2/TpiRa1 (Fig. 1b, Table 3).

Although the TpiC marker as a whole showed no regional differences in distribution (Fig. 2b), the TpiCa1 hap-
lotype occurred significantly more frequently in the collections from Togo and São Tomé and Príncipe compared 
to those from other African locations (Fig. 2c). This pattern is consistent with an earlier but more limited study36, 
and is similar to that observed for COI-CS frequency (Fig. 2a).

Tpi intron comparisons. The differences in the Africa TpiRa1 sequence relative to those found in the 
Western Hemisphere brings into question whether it truly represents a rice-strain defining haplotype. To address 
this issue and to find additional TpiC variants we sequenced a 172-bp fragment (TpiI4) from the adjacent 
intron that was previously shown to be highly polymorphic in the Western Hemisphere populations39. A total 
of 854 specimens from 11 African nations were analyzed, including all 11 TpiRa1 samples. Approximately half 
(405) of the specimens tested were heterozygous for the TpiI4 segment as indicated by overlapping sequence 
chromatographs. Out of the 449 remaining unambiguous sequences six unique TpiI4 sequences were found 
(Table 4). TpiRa1 was associated with a single TpiI4 sequence (TpiI4Ra1). The TpiCa1 exon haplotype was linked 
to two intron sequences, TpiCa1a and TpiCa1b, with the latter differentiated primarily by a 200-bp insertion 
(Supplementary Fig. S3). The TpiCa2 exon haplotype was associated with three intron variants, TpiCa2a-c, that 
differed from TpiCa1a by between 5–11 single base changes.

The TpiI4Ca1a haplotype was the most common found in Africa, making up 40% of all specimens, followed 
by TpiI4Ca2a (7%) and TpiI4Ca2b (2%), with most of the remainder found as heterozygotes (Table 4). The 
TpiI4Ca1b and TpiI4Ca2c sequences were each represented by a single specimen collected in Togo, while the 11 
TpiI4Ra1 specimens were distributed in the collections from five African nations.

The African TpiI4 haplotypes were compared to a database of 53 unique TpiI4 sequences from the Western 
Hemisphere (Argentina, Brazil, Florida, Puerto Rico, and Texas) derived from a total of 308 larval specimens 
collected from either corn-strain (maize, sorghum, cotton) or rice-strain (pasture grasses, millet) host plants. A 
single phylogenetic tree was generated describing the genetic relationships between sequences and color coded 
to show the distribution of the African TpiI4 haplotypes relative to host plant and COI strain markers (Fig. 5).

The TpiRa1a haplotype clustered with a clade that was 100% comprised of sequences from larvae collected 
from rice-strain host plants (Fig. 5a) or expressing the rice-strain defining COI-RS marker (Fig. 5b). Similarly, 
the five TpiI4 haplotypes associated with the Tpi-defined corn-strain TpiCa1 and TpiCa2 exon sequences fell into 
clusters predominated by both corn-strain preferred host plants and the COI-CS marker. These findings strongly 
support the strain-identification based on the TpiE4 marker, specifically showing that the so far unique TpiRa1 
exon variant is associated with an intron sequence that has a rice-strain identity based on plant host and the COI 
marker.

Discussion
The most parsimonious mechanism for the invasion of fall armyworm into Africa is a single introduction followed 
by dispersion through natural and trade-related migration. The likelihood of establishment is most dependent on 
the size of the introductory population or propagule40, while also influenced by the characteristics of the species 
and the physical environment41. Studies on the invasive history of the fire ant, Solenopsis invicta, extrapolated a 

Location

TpiE4 haplotypes (observed specimens)
TpiE4 haplotypes (estimated 
chromosomes)a

Ca1 Ca2 Ra1 C-YY H-CC H-YY Ca1adj Ca2adj Ra1adj

TOGa* 16 17 2 24 8 9 56 59 20

TOGb 70 47 3 59 13 9 212 162 28

STP* 6 3 0 6 1 2 16 13 3

GHA 16 6 2 7 3 1 34 17 7

CHA 7 1 0 4 3 3 18 9 6

nDRC* 12 0 0 9 3 0 30 9 3

sDRC* 27 8 2 19 5 1 65 32 9

CAR 12 4 0 6 4 2 28 14 6

BUR* 21 2 0 10 4 0 46 13 4

KEN* 12 2 1 13 3 8 34 24 13

TAN* 35 2 0 13 5 3 71 19 8

ZAM 22 13 0 10 3 1 46 31 4

SAf 34 7 2 23 1 1 75 35 5

Mean frequency 0.43 0.13 0.01 0.28 0.09 0.07 0.59 0.31 0.10

Table 3. TpiE4 haplotype data. Results from earlier study36 identified by asterisk. Adjusted haplotype numbers 
based on extrapolated genotypes of heterozygotes: C-YY = Ca1/Ca2, H-CC = Ra1/Ca1, H-YY = Ra1/Ca2. 
aAdjusted values, see Methods.
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founding size of 9–20 unrelated queens for establishment in Mississippi, with the permanent population express-
ing as few as six mitochondrial haplotypes42. Fall armyworm entry into Africa on infested agricultural material 
in the form of egg masses or young larvae could mean a starting population of as many as a hundred or more 
individuals, which would be in the range projected for fire ant establishment in Mississippi. There are several 
observations that are consistent with this invasion scenario.

A single founder population would be expected to represent a bottleneck that reduces genetic variation and 
therefore the number of COI and Tpi haplotypes present. Surveys of fall armyworm from western Africa35, eastern 
Africa36, and now central and southern Africa demonstrated genetic variation throughout the continent is very 
limited. From almost a thousand specimens from 11 African nations only three COIB variants were identified. 
This is consistent with recent findings from Uganda and South Africa that also reported few COI haplotypes36,37. 
Most compelling is the evidence from the highly variable TpiI4 intron segment for which we found 53 unique 
variants from 308 specimens in the Western Hemisphere but only six distinct African intron sequences from 740 
specimens.

If the geographically distant Africa populations all arose recently from the same source, then they should 
share some similarities in the type and frequency of haplotypes. The degree of similarity will be dependent on the 

Number of TpiI4 haplotypes

Collection Ca1a Ca1b Ca2a Ca2b Ca2c Ra1a Heterozygotes

TOGa 16 0 11 2 0 2 46

TOGb 88 0 30 10 1 3 116

STP 6 0 2 0 0 0 10

GHA 17 0 1 0 0 1 16

CHA 7 0 1 0 0 0 10

nDRC 6 0 0 0 0 0 6

sDRC 26 0 4 3 0 2 25

CAR 13 0 4 0 0 0 11

BUR 18 0 1 0 0 0 16

KEN 10 0 1 1 0 1 27

TAN 27 0 1 1 0 0 26

ZAM 23 0 10 3 0 0 12

SAf 31 0 3 2 0 2 28

Mean frequency 0.41 0.00 0.07 0.02 <0.00 0.01 0.50

Table 4. TpiI4 haplotype data.

Figure 5. Phylogenetic tree inferred by using the Maximum Likelihood method and Tamura-Nei model50. The 
tree with the highest log likelihood (−1421.58) is shown. The six African TpiI4 intron variants were compared 
to 53 unique haplotypes found from 308 Western Hemisphere (Argentina, Brazil, Texas, and Florida) larvae 
collected from strain preferred host plants. (a) Phylogenetic tree color-coded for the host plant from which the 
specimen was collected. CS hosts = maize or sorghum, RS hosts = turf or pasture grasses. (b) Same phylogenetic 
tree coded for COI-based strain identification. COI-CS = corn-strain, COI-RS = rice-strain. Scale bar represents 
substitutions per site.
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frequency, magnitude, and pattern of the dispersal behavior. Consistent and extensive migration on a continental 
scale will tend toward genetic homogeneity while more limited mobility will create regional heterogeneity due to 
stochastic events such as genetic drift and population bottlenecks.

There is an overall similarity in the COI and Tpi composition of the different African populations consistent 
with their having a common origin. The same haplotypes predominated ( > 90%) in all locations, i.e., COI-CSa1 
and COI-RSa1 (Table 2), the TpiE4 haplotypes TpiCa1 and TpiCa2 (Table 3), and the TpiI4 haplotypes TpiI4Ca1a 
and TpiI4Ca2a (Table 4). In addition, the single TpiR variant found in Africa, TpiRa1, has a broad distribution 
on the continent, having been found in Togo, Ghana, the Democratic Republic of the Congo, Kenya, and South 
Africa (Table 3). Yet it has so far not been detected in a survey of several hundred specimens from throughout the 
Western Hemisphere, suggesting that this is a relatively rare haplotype. These observations make it unlikely that 
the broad TpiRa1 geographical range is due to multiple independent introductions from different source popu-
lations. Finally, the discordant strain maker configuration COI-RS TpiC is a minority genotype in the Western 
Hemisphere but predominates in most of Africa (with the exception of Togo and São Tomé and Príncipe). The 
reason for this pattern is unknown but a single set of stochastic events producing the discordance followed by its 
dispersion to the rest of the continent seems a simpler explanation than multiple incursions with each coinciden-
tally producing a majority with the same discordant configuration.

There is some evidence of genetic structure in the African populations, though the low genetic variability in 
the markers so far tested limit such analyses. We now have two years of data for Togo representing several hun-
dred specimens from both larval collections and pheromone traps that together with one season of data from São 
Tomé and Príncipe show statistically significant differences in the frequency of COI and Tpi haplotypes from the 
rest of the continent (Figs 3 and 4). An earlier study with more limited data suggested the possibility that haplo-
type frequency differences followed an east-west axis, with the most western collections in Togo and São Tomé 
and Príncipe differing from the most eastern specimens from Kenya and Tanzania36. However, we found that fall 
armyworm from Ghana, which lies to the west of Togo, exhibits haplotype frequency patterns more similar to 
those found in central, eastern, and now southern Africa. Why Togo and São Tomé and Príncipe fall armyworm 
should differ from other parts of Africa is unknown as we know of no obvious differences in agricultural prac-
tices or habitat with the other surveyed locations. An explanation will require additional surveys of the region 
and should include methods to uncover more extensive genetic variation to make possible more sophisticated 
analysis of genetic structure and isolation over distance. The fact that such differences are observed even with the 
limited genetic markers at hand is an indication that fall armyworm migration in Africa may not be of sufficient 
frequency or magnitude to homogenize regional populations with respect to haplotype frequencies.

Two characteristics of fall armyworm strain behavior in the Western Hemisphere are that they are sympatric 
and are capable of productive interstrain mating17,21,27 despite the existence of hybridization barriers8,23,25,26,28. 
There are numerous observations that the two strains can be found in collections from a single plant host19,21,22,43, 
making it plausible that both were present in the propagule introducing fall armyworm to Africa. If so, that small 
initial mating population would be expected to exhibit a higher than normal level of interstrain hybridization, 
an example of admixture frequently observed during invasive events44,45. In addition, small breeding populations 
are often associated with inbreeding depression due to the higher likelihood of deleterious mutations becoming 
homozygous46. Under such conditions, interstrain hybrids could have a significant fitness advantage and become 
over-represented in the invasive population, leading ultimately to the loss of one or both strains in favor of more 
novel hybrid genotypes.

Events of this type could explain the extensive disagreement between the COI and Tpi strain markers observed 
in Africa fall armyworm populations. The strong bias for the rice-strain COI-RS type is inconsistent with the corn 
and sorghum host plants from which the Africa collections were made and contrasts with the predominance 
(>90%) of the corn-strain defining TpiC marker in the same collections. The mitochondrial COI and nuclear Tpi 
genes are not physically linked so separation of the markers can occur from a single cross and thereafter segregate 
independently if strain identity is compromised. Population bottlenecks and random loss of genetic variation 
could then lead to the haplotype profiles currently observed. Testing this possibility will require more extensive 
genetic analysis as well as physiological and behavioral comparisons with the Western Hemisphere fall armyworm 
strains. If the African fall armyworms are primarily (or perhaps even entirely) interstrain hybrids their behaviors 
with respect to host plant preferences, mating behavior, and resistance may differ significantly from that charac-
terized for Western Hemisphere populations that retain strain integrity. This could have important ramifications 
to the design and effectiveness of mitigation efforts.

In summary, genetic “snapshot” of fall armyworm populations spanning sub-Saharan Africa is presented that 
describes the situation two years after the first detection of the pest in 2016. This will be an important resource 
for future studies on how fall armyworm distributions may change as the invasive populations continue to equil-
ibrate to their new environment. We believe the observed combination of low numbers of haplotypes, regional 
similarities in haplotype composition, regional differences in haplotype frequencies, and evidence of excessive 
interstrain hybridization is most parsimoniously explained by a single introduction followed by rapid dispersion 
through natural and trade-related processes, which while geographically extensive is so far not of a magnitude 
able to homogenize widely separated populations.

Methods
specimen collections and DNA preparation. Specimens were obtained as adult males from pheromone 
traps in Togo maize (corn) fields or larvae from maize or sorghum plants at various locations in Chad, the Central 
African Republic, South Africa, Zambia, and Ghana in 2017 (Table 1). Additional specimens from previously 
described Democratic Republic of the Congo collections were analyzed36. These were from the Haut-Katanga 
province and were pooled with the earlier data from the same location (sDRC), which were separately analyzed 
from more northern collections (nDRC). Collected specimens were stored either air-dried or in ethanol at room 
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determined, with TpiC-YY = TpiCa1/TpiCa2, TpiH-CC = TpiRa1/TpiCa1, and TpiH-YY = TpiRa1/TpiCa2. When 
individual haplotypes could be extrapolated from heterozygotes, the data was adjusted. The Togo pheromone trap 
collections (TOGb) are all male so all have two Tpi genes. The adjusted number of haplotypes was calculate using 
the following equations: Number of TpiCa1 = 2 × (TpiCa1 specimens) + TpiC-YY specimens + TpiH-CC spec-
imens; TpiCa2 = 2 × (TpiCa2) + TpiC-YY + TpiH-YY; TpiRa1 = 2 × (TpiRa1) + TpiH-CC + TpiH-YY (Table 3). 
In the case of the larval collections the genders of the individual specimens were unknown, so unambiguous 
haplotypes could be homozygous (2 Tpi copies) or hemizygous (one gene). A 1:1 sex ratio was assumed so that 
the average number of Tpi genes per specimen is given as 1.5, i.e., (2 in males + 1 in females)/2. Calculations of 
larval haplotype numbers used the same equations as with pheromone traps except that the number of specimens 
with an unambiguous haplotype was multiplied by 1.5 instead of 2.

In the case of the TpiI4 haplotypes, several of the heterozygotes could be due to multiple haplotype combi-
nations. Because of this ambiguity only the number of specimens exhibiting an unambiguous haplotype was 
reported, along with the total number of heterozygous TpiI4 specimens (Table 4).

Accession codes. MH726218 - MH726361.

Data Availability
All data generated or analyzed during this study are included in this published article. The sequences used for the 
phylogenetic analysis are deposited into GenBank and included in (MH726218 - MH726361).
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